Кулинария

Теория цепных реакций. Цепные реакции. Механизм протекания цепных реакций Цепной реакции комплекс методов

На основе электронной теории и теории строения молекул и атомов создались новые предпосылки для развития химической кинетики.

К началу XX в. химическая кинетика располагала: 1) представлением об активных молекулах; 2) классификацией реакций, рассматривающей моно-, би- и тримолекулярные; 3) учением о промежуточных продуктах; 4) первыми теориями горения и взрывов.

Уже в конце XIX в. происходит заметный поворот в направлении исследований химической кинетики. Центр тяжести постепенно перемещается с изучения реакций в жидкой фазе на изучение реакций в газовой фазе (Боденштейн, Габер и их школы). Это было обусловлено в основном двумя причинами. С научной стороны это было вызвано тем, что к реакциям в газовой фазе можно было с успехом применить блестяще развитый к тому времени аппарат кинетической теории газов. С практической стороны это вызывалось запросами развивающейся промышленности (усовершенствование двигателей внутреннего сгорания; широкое внедрение газовых реакций в химическую промышленность и т. п.).

В 1899 г. М. Боденштейн опубликовал обширное исследование под заглавием «Газовые реакции в химической кинетике». Он всесторонне исследовал образование и разложение HI, Н 2 S, Н 2 Sе и Н 2 O при разных температурах. Он показал, что эти реакции протекают согласно теории Вант-Гоффа и не образуют ложных равновесий, как на то указывали Пелабон, Дюгем и Гелье. С выводами Боденштейна согласовывались данные, полученные Д. П. Коноваловым.

Боденштейну принадлежит заслуга в разработке метода стационарных концентраций. Он показал, что концентрация активных частиц вскоре после начала реакции приобретает стационарное значение, т. е. скорость их возникновения делается равной скорости их расходования. При этом концентрацию активных частиц можно выразить через концентрацию исходных веществ.

Для элементарных реакций представления Вант-Гоффа и Аррениуса вполне справедливы. Однако большинство реально протекающих реакций, как было показано впоследствии, связано с последовательностью взаимно связанных элементарных реакций. Эта сложная суммарная реакция уже не укладывается в простые законы для моно- и бимолекулярных реакций. Поэтому отступлений от кинетических законов Вант-Гоффа накапливалось все больше и больше. Предстояло выяснить скрытые причины этих отступлений. Напрашивался вопрос, не отражают ли эти отклонения каких-то новых кинетических закономерностей, неизвестных Вант-Гоффу и Аррениусу? Новый путь для исследования природы сложных реакций проложила цепная теория.

Понятие о цепных реакциях впервые с полной отчетливостью было сформулировано в результате изучения фотохимических реакций.

Изучая закон Эйнштейна, согласно которому число прореагировавших молекул равно числу поглощенных квантов света, Боденштейн на примере фотохимической реакции соединения хлора с водородом показал, что в этом случае закон Эйнштейна не выполняется даже и приближенно: поглощение одного кванта света вызывало реакцию большого числа молекул. Это число испытывало значительные изменения в зависимости от условий опыта: при благоприятных обстоятельствах число реагирующих молекул доходило до 1000000 на один поглощенный квант света.

Для объяснения этого факта Боденштейн предположил, что поглощение света вызывает ионизацию поглощающей частицы, в результате чего образуются электрон и положительно заряженный остаток. Реакцию между положительным остатком и нормальной молекулой вещества Боденштейн рассматривал как первичную.

Вторичную реакцию он представлял себе как присоединение освободившегося при поглощении света электрона к нейтральным молекулам, которые становились при этом активными и тем самым обеспечивали продолжение реакции. Бели эта реакция, в свою очередь, создаст некую активную молекулу и т. д., то будет происходить ряд элементарных реакции, зависящих не от начальных условий опыта, а ют различимых факторов, влияющих па избыточную энергию молекулы. При этом может произойти обрыв вторичной реакции.

От такого ионизационного механизма реакции пришлось, однако, вскоре отказаться, так как при освещении хлора светом свободные электроны обнаружены не были. Боденштейн и Нернст предложили в связи с этим иные возможные механизмы реакции.

Боденштейн в 1916 г. предположил, что поглощение молекулой хлора светового кванта приводит не к освобождению электрона, а к непосредственному созданию активной молекулы хлора. Последняя обладает энергией, достаточной для реакции с молекулой водорода, причем образуются две молекулы соляной кислоты, одна из которых богата энергией, т. е. активна. При столкновении с другой молекулой хлора такая молекула передает ей свою энергию, и тем самым образуется новая активная молекула, взаимодействующая с молекулой водорода. Эта цель будет продолжаться до тех пор, пока молекулы соляной кислоты или хлора, являющиеся носительницами энергии, не потеряют ее каким-либо путем, например, при столкновении со стенкой сосуда или с молекулой постороннего газа (в частности кислорода, заметно тормозящего эту реакцию).

Отмечая активную молекулу звездочкой, можно представить механизм реакции, по Боденштейну, следующим образом:

Cl 2 + hν → Cl 2 ∙

Cl 2 ∙ + H 2 → HCl∙ + HCl

HCl∙ + Cl 2 → Cl 2 ∙ + HCl

Cl 2 ∙ + H 2 → HCl∙ + HCl и т.д.

В 1918 г. Нернстом был предложен иной механизм реакции. Объясняя аномалии в фотохимических реакциях, Нернст, на примере фотохимического соединения хлора с водородом, предложил следующий цепной механизм для объяснения причины большого квантового выхода этой реакции:

Cl 2 + hν → Cl + Сl

Cl + H 2 → H + HCl

H + Cl 2 → Cl + HCl

Cl + H 2 → H + HCl и т.д.

По этому механизму атомы хлора, соединяясь с молекулами водорода и образуя хлористый водород, выделяют атомы водорода, а последние, в свою очередь, соединяясь с молекулами хлора, также образуют хлористый водород и восстанавливают свободные атомы хлора. Отсюда при распадении молекул хлора под действием света и наблюдается большой выход хлористого водорода.

Изучение подобных реакций с особой наглядностью показало, что химический процесс - это далеко не «одноактная драма», в течение которой взаимодействие реагирующих молекул прямо приводит к образованию конечных продуктов реакции. В действительности же в процессе химической реакции образуются лабильные промежуточные продукты, которые взаимодействуют с молекулами исходных веществ. Наряду с образованием конечного продукта может происходит регенерация активной частицы. В этом случае реакция будет протекать по цепному механизму.

До 1925 г. попытки ряда авторов распространить представления Нернста об активной роли свободных атомов на различные реакции носили единичный характер, и концепция Нернста оставалась «как бы отдельным исключением среди всех реакций химии, которые по-прежнему продолжали трактовать с точки зрения старых представлений о непосредственных моно- и бимолекулярных процессах».

В 1919 г. Христиансен и Герцфельд и Поляньи в 1920 г. распространили представления Нереста о цепном механизме реакций на термическую реакцию брома с водородом 7 .

В 1923 г. Христиансен и Крамере в Копенгагене использовали представления о цепном характере химических реакций для объяснения отклонений константы К 2 в мономолекулярной теории распада N 2 О 5 . Авторы применили к тепловым реакциям идею «энергетической цени», согласно которой активными свойствами обладают «горячие» молекулы, образующиеся в ходе реакции за счет выделения теплоты реакции. Такие активные молекулы при столкновении с другими возбуждают элементарный акт реакции, инициируя тем самым ценную реакцию.

Христиансен и Крамере показали, что химическая реакция сама является генератором активных центров. Исследования этих химиков вызвали повышенный интерес к проблемам химической кинетики. Как по новым положениям, так и по своему влиянию, работы Христиансена и Крамерса заняли видное место в истории химической кинетики 20-х годов ХХ столетия.

В 1926-1929 гг. появилось почти одновременно три цикла работ в области химической кинетики. Это, во-первых, работы по изучению условий зажигания паров серы и фосфора, а также по определению температур зажигания различных газовых взрывчатых смесей, выполненные Н. Н. Семеновым и его сотрудниками в лаборатории электронной химии Государственного физико-технического рентгеновского института в Ленинграде; во-вторых, работы Хишнельвуда в Оксфорде в Англии по изучению реакции соединения H 2 + О 2 вблизи температуры взрыва; в-третьих, работы Бэкштрема по окислению бензальдегида, Nа 2 S 2 О 3 . и т. д., сделанные в лаборатории Тейлора в Ирипстопе.

В 1926 г. 10. Б. Харитон и P. Ф. Вальта в лаборатории Н. Н. Семенова изучали тушение хемилюминесценции фосфора и натолкнулись на явление прекращения свечения паров фосфора, находящегося в смеси с кислородом при низких давлениях. Если давление было меньше, чем 0,05 мм, свечение отсутствовало, и всякий раз, когда давление кислорода превышало это критическое значение, свечение снова мгновенно возникало.

Объяснение этого удивительного явления, данное Семеновым, вышло далеко за рамки простого описания частного случая свечения паров фосфора. Семенов, на основе изучения реакции окисления фосфора, сделал далеко идущий вывод о том, что подобная реакция является цепной реакцией, протекающей при участии свободных радикалов, играющих роль активных центров.

В книге «Цепные реакции» Семенов отмечает два этапа в развитии цепной теории. Первый из них был связан с изучением фотохимических реакций и привел к созданию теории неразветвляющихся цепей; второй, начавшийся с 1927 г., связан с изучением термических реакций воспламенения и ознаменован введением в цепную теорию представлений о разветвлении цепей. «…Та роль, какую сыграла реакция Н 2 + С1 2 в первом этапе, выпала на долю реакции окисления фосфора и окисления водорода во втором»,- пишет Семенов.

Исходное положение цепной теории заключается в том, что энергия, выделяющаяся при экзотермической реакции (Е + Q), в первый момент сосредоточивается в продуктах реакции, создавая частицы с очень большой энергией. Таким образом, сама реакция, наряду с тепловым движением, может стать источником активаций. Отсюда, каждая элементарная реакция вызывает следующую, создавая тем самым цепь реакций.

Если α есть вероятность такого рода продолжения цепи, а n 0 - число первичных реакций, создаваемых ежесекундно тепловым движением, то скорость реакций:

W 0 = n 0 /(1−α) = n 0 /β

где β = 1−α - есть вероятность обрыва цепи.

Появление первой работы по горению фосфора было встречено за границей сначала очень неприязненно, вспоминал Семенов и 1932 г. Виднейший ученый в области кинетики газовых реакций Боденштейн и печати резко критиковал работу, считая результаты ошибочными. Он писал примерно так: «Снова появилась попытка вызвать к жизни явления ложных равновесий, невозможность которых была доказана 40 лет назад. К счастью, и эта попытка, как и все прежние, основана па методических ошибках». Только после того, как мы другими методами доказали правильность наших результатов и после того, как нами была создана теория, объясняющая эти явления,- цепная теория воспламенения, отношение заграничных ученых, и прежде всего самого Боденштейна, резко переменилось. В ноябре 1927 г. Боденштейн в письме ко мне отказывается от предыдущего мнения в таких словах: «Нашу новую статью об окислении паров фосфора я проштудировал с большим интересом и скажу, что теперь против Вашего толкования я ничего не могу возразить. Я могу, таким образом, поздравить Вас и Харитона с замечательными и высоко интересными результатами». В марте 1928 г. после появления моей теоретической статьи и статьи об окислении серы он пишет мне: «Ваши результаты с горением фосфора и серы по отношению к классической кинетике революционны. И если эти опыты действительно верны, то придется ввести в классическую кинетику существенные изменения».

Изучение механизма сложных реакций и природы промежуточных продуктов потребовало разработки новой аппаратуры и методов (кинетических) для исследования деталей химического процесса.

«Самое важное,- писал Семенов,- что теория шла здесь рука об руку с новыми экспериментами, приводящими к открытию новых и объяснению старых, давно забытых и совершенно непонятных явлений. Эти работы привели к количественным формулировкам новых цепных закономерностей, общих для целого большого класса явлений, и очертили ту область реакций, которая специфична для новых представлений. Они подняли широкий интерес к этой новой области реакций и вызвали к жизни в 1930-1933 гг. широкую волну новых кинетических исследований. Поэтому мы склонны считать, что именно эти работы положили фундамент нового развития химической кинетики».

С этого момента начинается новый этап в развитии химической кинетики, когда теоретически и экспериментально было показано, что цепной механизм реакции является основным типом химических превращений, осуществляющихся при помощи свободных атомов и радикалов.

В 1932 г. Семеновым была развита теория взаимодействия цепей, основанная на связи обычной химической цепи с энергетической цепью, где основную роль играют «горячие» молекулы, обладающие повышенной химической активностью. Семенов показал, что цепной механизм большинства реакций не случаен; он зависит от самых общих и глубоких соотношений между энергией химической связи, теплотой и энергией активации реакции.

В 1934 г. вышла монография Семенова «Цепные реакции», где на богатом экспериментальном материале была развита теория разветвления цепей и их обрывов на стенках сосудов.

В заключении своей книги Семенов писал: «…Разработка статистики стационарных процессов, соединения с детальным изучением элементарных актов передачи энергии, и природы молекул и атомов, возникающих при этом в качестве промежуточных продуктов, является, по нашему мнению, главной линией развития теоретической химии на ближайшие десятилетия».

Представления о разветвленных реакционных цепях, предложенные Семеновым для объяснения кинетических особенностей сложных окислительных реакций, явились началом нового этапа в изучении механизма сложных реакций. За последние 30 лет появилось огромное количество работ, посвященных детальному изучению механизма различных процессов, промежуточных продуктов, в частности свободных радикалов.

Большой цикл исследований был посвящен изучению элементарных химических процессов, где свойства каждой отдельной молекулы проявляются наиболее четко. Это позволяло глубоко проникнуть в самый внутренний механизм сложного химического процесса, состоящего из совокупности элементарных процессов.

Важным достижением ценной теории явилось экспериментальное доказательство существования значительных концентраций в зоне газовых реакций свободных радикалов - гидроксила и атомов водорода, взаимодействием которых с молекулами смеси и определяется ход реакций.

В 30-е годы большое внимание в связи с этим, было обращено на изучение природы активных промежуточных продуктов - химически неустойчивых частиц, появляющихся в процессе развития химической реакции и принимающих непосредственное участие в ее течении.

О природе активных центров - участников химических реакционных цепей,- долгое время ничего не было известно. В 30-е годы для изучения физико-химических свойств химически неустойчивых свободных атомов и радикалов, в частности, свободного гидроксила, с успехом был применен спектроскопический метод поглощения, разработанный Ольденбертюм в США, и метод линейчатого поглощения, разработанный В. Н. Кондратьевым в СССР.

«До недавнего времени,- писал В. Н. Кондратьев в 1944 г.,- развитие химической кинетики шло по линии установления микроскопических закономерностей и построения формальных кинетических схем реакции без должного их химического обоснования. Вопрос о химической природе активных центров реакции либо оставлялся совершенно открытым, либо же решался на основании более или менее убедительных косвенных соображений, не подкрепленных прямым опытом. Однако развитие современных физико-химических методов исследования в корне изменило положение вещей и положило начало систематическому изучению реакций под углом зрения химического обоснования их внутреннего механизма. Из новых эффективных методов идентификации и анализа активных промежуточных веществ в первую очередь нужно упомянуть спектроскопический метод; метод орто- и пара-водорода; метод зеркал и, наконец, метод радиоактивных индикаторов».

Работы В. Н. Кондратьева и его учеников дали количественные измерения концентрации промежуточных веществ, что позволяет устанавливать количественные закономерности, являющиеся предпосылкой не только химического, по и математического обоснования механизма реакции.

Экспериментальное доказательство участия свободных радикалов, осколков молекул о ненасыщенными валентностями в отдельных стадиях химических реакций имело первостепенное значение для дальнейшего развития химической кинетики.

До сих пор мы рассматривали химические реакции, протекающие сравнительно просто. В таких реакциях каждый элементарный акт взаимодействия - каждое столкновение между активными молекулами реагирующих веществ - протекает независимо от результатов предшествующих элементарных актов. Образование макроскопических количеств продукта реакции является здесь результатом большого количества этих независящих друг от друга актов.

Существует, однако, обширная группа реакций, протекающих более сложно. В этих реакциях возможность протекания каждого элементарного акта сопряжена с успешным исходом предыдущего акта и, в свою очередь, обусловливает возможность последующего. Здесь образование макроскопических количеств продукта реакции представляет собой результат цепи элементарных актов взаимодействия. Такие реакции называются цепными.

Цепные реакции протекают с участием активных центров - атомов, ионов или радикалов (осколков молекул), обладающих неспаренными электронами и проявляющих вследствие этого очень высокую реакционную активность. Роль активных центров могут играть, например, атомы и группы атомов

При актах взаимодействия активных центров с молекулами исходных веществ образуются молекулы продукта реакции, а также новые активные частицы - новые активные центры, способные к акту взаимодействия. Таким образом, активные центры служат создателями цепей последовательных превращений веществ.

Простым примером цепной реакции может служить реакция синтеза хлороводорода

Эта реакция вызывается действием света. Поглощение кванта лучистой энергии Zzv молекулой хлора приводит к ее возбуждению - к появлению в ней энергичных колебаний атомов. Если энергия колебаний превышает энергию связи между атомами, то молекула распадается. Этот процесс фотохимической диссоциации можно выразить уравнением:

Образующиеся атомы хлора легко реагируют с молекулами водорода:

Атом водорода, в свою очередь, легко реагирует с молекулой хлора:

Эта последовательность процессов продолжается дальше: в рассматриваемом случае число звеньев может достигать 100 000. Иначе говоря, один поглощенный квант света приводит к образованию до ста тысяч молекул НС1. Заканчивается цепь при столкновении свободного атома со стенкой сосуда, в котором происходит реакция. Цепь может закончиться также при таком соударении двух активных частиц и одной неактивной, в результате которого активные частицы соединяются в молекулу, а выделяющаяся энергия уносится неактивной частицей. В подобных случаях происходит обрыв цепи.

Таков механизм цепной неразветвленной реакции; при каждом элементарном взаимодействии один активный центр образует кроме молекулы продукта реакции один новый активный центр.

В 20-х гг. XX в. Н.Н. Семенов совместно с сотрудниками, изучая кинетику различных процессов, открыл явления, необъяснимые на основе существовавших в то время представлений о механизме химических реакций. Для их объяснения Н.Н. Семенов выдвинул теорию разветвленных цепных реакций, в ходе которых взаимодействие свободного радикала с молекулой исходного вещества приводит к образованию не одного, а двух или большего числа новых активных центров. Один из них продолжает старую цепь, а другие дают начало новым; цепь разветвляется, и реакция прогрессивно ускоряется.

К разветвленным цепным реакциям относится, например, реакция образования воды из простых веществ. Экспериментально установлен и подтвержден расчетами следующий механизм этой реакции. В смеси водорода с кислородом при нагревании или пропускании электрического разряда происходит взаимодействие молекул этих газов с образованием двух гидроксильных радикалов:

Радикалы ОН легко реагируют с молекулой водорода

что приводит к образованию молекулы воды и свободного атома водорода. Последний реагирует с молекулой O 2 , давая уже две новых активных частицы:

Атом кислорода, реагируя с молекулой H 2 , в свою очередь, может породить два новых активных центра:

Таким образом происходит прогрессивное увеличение числа активных частиц и, если обрывы цепей не препятствуют этому процессу, скорость реакции резко возрастает.

По цепному механизму протекают такие важные химические реакции, как горение, взрывы, процессы окисления углеводородов (получение спиртов, альдегидов, кетонов, органических кислот) и реакции полимеризации. Поэтому теория цепных реакций служит научной основой ряда важных отраслей техники и химической технологии.

К цепным процессам относятся и ядерные цепные реакции , протекающие, например, в атомных реакторах или при взрыве атомной бомбы. Здесь роль активной частицы играет нейтрон, проникновение которого в ядро атома может приводить к его распаду, сопровождающемуся выделением большой энергии и образованием новых свободных нейтронов, продолжающих цепь ядерных превращений.

  • Обычно при обозначении активных частиц указывают точками только неспаренные электроны, например
  • Николай Николаевич Семенов (1896-1986) - советский академик, лауреат Ленинской, Государственной и Нобелевской премий. Им разработана и экспериментальнообоснована теория цепных реакций и создана на ее основе теория воспламененияи взрывов, имеющая большое практическое значение.

Особый класс сложных многостадийных реакций представляют собой цепные реакции . Исходные вещества превращаются в продукты реакции в результате протекания ряда регулярно повторяющихся элементарных реакций с участием свободных радикалов и атомов. При протекании элементарного акта свободные радикалы взаимодействуют с молекулами реагентов с образованием продуктов реакции и новых радикалов.

Свободные радикалы (обозначаются R ) – отдельные атомы или молекулярные частицы, имеющие один или несколько неспаренных электронов. Поэтому, как правило, реакции с их участием имеют малую энергию активации – следствие повышенной реакционной способности. Взаимодействие радикалов между собой – безактивационный процесс, энергия активации которого равна нулю. Поэтому свободные радикалы обладают малым временем жизни и являются нестабильными промежуточными продуктами. Необходимо отметить, что известны и стабильные радикалы, например молекулы NO или ClO 2 .

В протекании цепной реакции (А®В) можно выделить три стадии: зарождение цепи, развитие цепи, обрыв цепи.

Зарождение цепи .Первая стадия цепной реакции – появление в реакционной смеси первичной активной частицы – радикала: А ® R 1 + R 2 .

Первичная активная частица может возникнуть в результате распада на радикалы отдельных молекул, например, вследствие термической или фотохимической диссоциации. Эта стадия характеризуется скоростью зарождения цепи (v 0) – числом свободных радикалов, появляющихся в единице объема в единицу времени.

Развитие цепи . На второй стадии происходит большое количество повторяющихся элементарных актов химического взаимодействия радикала с молекулами реагентов с образованием новых радикалов и продуктов реакции: А + R 1 ® R 2 + В. Эта стадия характеризуется длиной цепи g – числом актов взаимодействия от зарождения до обрыва цепи. По типу развития цепи реакции делятся на две основные группы:

1) неразветвленный цепной процесс. В ходе реакции взамен вступившего во взаимодействие радикала в элементарном акте образуется только одна новая активная частица. Общее число активных частиц на стадии развития цепи не изменяется;

2) разветвленный цепной процесс. В элементарном акте развития цепи образуется более чем одна активная частица. Число зарождающихся цепей будет нарастать, что приведет к резкому увеличению скорости реакции. Число активных частиц, образующихся в элементарном акте, называется «коэффициентом размножения» (n ). Очевидно, что для неразветвленного цепного процесса n =1, а для разветвленного n >1.

Обрыв цепи. Исчезновение активных частиц, например, в результате их взаимодействия друг с другом: R 1 + R 2 ® А.

Скорость накопления продуктов цепной реакции определяется скоростью зарождения цепи v 0 и длиной цепи g: v = g×v 0 .

Пример 1. Неразветвленный цепной процесс:

H 2 + Cl 2 ® 2HCl

зарождение цепи: Cl 2 + hn ® 2Cl H 2 + hn ® 2H

развитие цепи: Cl + H 2 ® HCl + H H + Br 2 ® HCl + Cl

обрыв цепи: Cl + H ® HCl Cl + Cl ® Cl 2 H + H ® H 2 .

Пример 2. Разветвленный цепной процесс:

2H 2 + O 2 ® 2H 2 O

зарождение цепи: H 2 + hn ® 2H O 2 + hn ® 2O

развитие цепи: H + O 2 ® OH + O O + H 2 ® OH + H

OH + H 2 ® H 2 O + H

обрыв цепи: OH + H ® H 2 O H + H ® H 2 O + O ® O 2 .

Рассмотрим факторы, влияющие на цепной процесс.

1. Появление активных частиц происходит либо в результате локального нагрева части реакционного объема (например, от искры электрического разряда), либо под воздействием квантов света или ионизирующего излучения. Зарождение цепи могут вызвать и специальные добавки – инициаторы (малоустойчивые вещества, легко распадающиеся с образованием радикалов).

2. Протекание реакции возможно, если скорость процесса развития цепи выше скорости ее обрыва. Поскольку скорость реакций пропорциональна концентрации реагентов, существует нижний концентрационный предел протекания цепной реакции (минимальная концентрация реагентов, при которой возможно протекание цепного процесса).

3. Прекращение цепного процесса происходит в результате исчезновения активных частиц в реакционной смеси. Уменьшение количества радикалов за счет рекомбинация при встрече только двух радикалов маловероятно, поскольку образующиеся молекулы находятся в возбужденном состоянии и легко распадаются на исходные радикалы. Для того чтобы этого не произошло, избыток энергии должен быть передан третьей частице (например, молекуле или стенке реакционного сосуда). Увеличение концентрации реагентов выше определенного предела приводит к увеличению вероятности тройных соударений и, соответственно, увеличению скорости обрыва цепи. Поэтому существует верхний концентрационный предел протекания цепного процесса (максимальная концентрация реагентов, при которой еще возможно протекание цепного процесса).

Материал из Электронная энциклопедия ТПУ

Теория цепных реакций - была выдвинута Н.Н. Семеновым в 1928 г. при изучении кинетики разнообразных процессов. Теория цепных реакций является научной основой для отраслей техники.

Цепная реакция

Цепная реакция в химии - реакция, в ходе которой исходные вещества вступают в цепь превращений с участием промежуточных активных частиц (интермедиатов) и их регенерацией в каждом элементарном акте реакции.

В 1926 г. советский физико-химик Ю. Б. Харитон, изучавший взаимодействие фосфора и кислорода при низких давлениях, обнаружил, что пары фосфора воспламеняются в некотором диапазоне давлений кислорода, и при понижении давления горение прекращается. Однако добавление инертного газа при этом пониженном давлении вызывает вспышку паров фосфора. Такое аномальное поведение реагентов - резкий переход от инертности к бурной реакции - противоречило тогдашним представлениям о химической кинетике, и выводы Харитона были подвергнуты критике Боденштейном. Н. Н. Семёнов, воспроизведя эксперимент Харитона, полностью повторил его результаты и открыл дополнительно зависимость реакционную способность фосфора от объёма сосуда. Найденные зависимости привели Семёнова и его коллег к открытию гибели активных частиц на стенках сосуда и понятия о разветвлённых цепных реакциях. Выводы Семёнова, опубликованные в 1927 г., были признаны Боденштейном, а в 1928 г. Семёнов и Рябинин обнаружили аналогичное поведение паров серы в кислороде. В этом же году С. Хиншелвуд опубликовал работу по исследованию верхнего предела при окислении смесей водорода с кислородом. На рубеже 1920-1930-х гг. Семёнов показал радикальный механизм цепного процесса и описал основные его черты. В 1963 году совместно с А. Е. Шиловым он установил роль энергетических процессов в развитии цепных реакций при высоких температурах. За разработку теории цепных реакций в 1956 году Семёнов вместе с Хиншелвудом был удостоен Нобелевской премии по химии.

Применение

Все экспериментальные факты получили логичное объяснение в рамках теории разветвленной цепной реакции. При низких давлениях большинство активных частиц – атомов и свободных радикалов, не успев столкнуться со многими молекулами реагентов и «размножиться», долетают до стенок реакционного сосуда и «погибают» на них – цепи обрываются. Чем меньше диаметр реактора, тем больше у радикалов шансов достичь его стенок – отсюда зависимость процесса от размеров сосуда.

С повышением концентрации шансов столкнуться с молекулами реагентов для радикалов становится больше, чем шансов достичь стенки – возникает лавина реакций. Это объясняет существование нижнего предела по давлению. Молекулы инертного газа, по меткому выражению Семенова, «путаясь в ногах» у активной частицы, замедляют ее движение к стенке; так объясняется удивительное влияние аргона на величину критического давления. Когда же достигается верхний предел по давлению, цепи снова обрываются быстрее, чем происходит их разветвление; однако причина обрыва цепей здесь иная – активные радикалы исчезают в результате «взаимного уничтожения» – рекомбинации в объеме сосуда (скорость этой реакции очень быстро увеличивается с ростом давления).

Весьма распространены случаи, когда цепное самоускорение осуществляется в течение длительного времени и не приводит к воспламенению, например при окислении углеводородов в газовой и жидкой фазах. Такие процессы H. H. Семенов назвал реакциями «вырожденного взрыва».

Основные теории цепных реакций изложены им в монографии «Цепные реакции» (1934). В 1935 г. ее перевод был издан в Англии. Этот фундаментальный труд H. H. Семенова стал настольной книгой всех ученых, работающих в области химической физики.

Теория разветвленно-цепных реакций имеет большое практическое значение, так как объясняет течение многих промышленно важных процессов, таких как горение, крекинг нефти, воспламенение горючей смеси в двигателях внутреннего сгорания.

Наличие верхнего и нижнего пределов по давлению означает, что смеси кислорода с водородом, метаном, другими горючими газами взрываются лишь при их определенных соотношениях. С учетом этого обстоятельства конструируют кислород-водородные, кислород-ацетиленовые и другие горелки для высокотемпературных работ по газовой сварке и резке металла.

Цепная реакция представляет собой последовательность реакций, в которых реакционный продукт или побочный продукт вызывают дополнительные реакции. В цепной реакции положительная обратная связь приводит к саморасширяющейся цепочке событий.

Цепные реакции — это один из способов, при котором системы, находящиеся в термодинамическом неравновесном состоянии, могут высвобождать энергию или увеличивать энтропию, чтобы достичь состояния с более высокой энтропией. Например, система не может быть в состоянии достичь более низкого энергетического состояния, выделяя энергию в окружающую среду, поскольку она каким-то образом препятствует или препятствует прохождению пути, который приведет к высвобождению энергии. Если реакция приводит к небольшому энерговыделению, позволяющему высвобождать больше энергии в расширяющейся цепочке, то система, как правило, разрушается взрывом до тех пор, пока большая или вся запасенная энергия не будет освобождена.

Таким образом, макроскопическая метафора цепных реакций представляет собой снежный ком, вызывающий больший снежный ком, пока, наконец, не произойдет лавинный эффект (« эффект снежного кома »). Это результат накопленной гравитационной потенциальной энергии, ищущей путь высвобождения по трению. Химически эквивалент снежной лавине — это искра, вызывающая лесной пожар. В ядерной физике одиночный беспризорный нейтрон может привести к быстрому критическому событию, которое может, наконец, оказаться достаточно энергичным для ядерного взрыва или (в бомбе) ядерного взрыва.

Химические цепные реакции

История

В 1913 году немецкий химик Макс Боденштейн впервые выдвинул идею химических цепных реакций. Если две молекулы реагируют, образуются не только молекулы конечных продуктов реакции, но также некоторые нестабильные молекулы, которые могут далее взаимодействовать с исходными молекулами с гораздо большей вероятностью, чем исходные реагенты. В новой реакции помимо стабильных продуктов образуются и другие нестабильные молекулы и т. Д.

В 1918 году Вальтер Нернст предположил, что фотохимическая реакция водорода и хлора является цепной реакцией, чтобы объяснить большой квантовый выход, означающий, что один фотон света ответственен за образование целых 10 6 молекул продукта HCl. Он предположил, что фотон диссоциирует молекулу Cl 2 на два атома Cl, каждый из которых инициирует длинную цепочку реакционных стадий, образующих HCl.

В 1923 году датские и голландские ученые Кристиан Кристиансен и Хендрик Энтони Крамерс в анализе образования полимеров указывали, что такая цепная реакция не должна начинаться с молекулы, возбуждаемой светом, но также может начинаться с того, что две молекулы, К тепловой энергии, как это было предложено ранее для инициирования химических реакций Ван-т-Гоффа.

Кристиансен и Крамерс также отметили, что если в одном звене реакционной цепи образуются две или более нестабильные молекулы, цепь реакции будет ветвиться и расти. В результате на самом деле происходит экспоненциальный рост, что приводит к взрывному увеличению скоростей реакций и даже к самим химическим взрывам. Это было первое предложение о механизме химических взрывов.

Количественная теория цепной химической реакции была создана советским физиком Николаем Семеновым в 1934 году. Семёнов поделился Нобелевской премией в 1956 году с сэром Кириллом Норманном Хиншелвудом, который независимо разработал многие из тех же количественных понятий.

Типичные шаги

Основными типами ступеней цепной реакции являются следующие типы.

  • Инициирование (образование активных частиц или носителей цепи, часто свободных радикалов, на тепловой или фотохимической стадии)
  • Распространение (может содержать несколько элементарных шагов в цикле, когда активная частица в результате реакции образует другую активную частицу, которая продолжает цепочку реакции, введя следующую элементарную стадию). Фактически активная частица служит катализатором для общей реакции цикла распространения. Частными случаями являются:
* Разветвление цепи (шаг распространения, который формирует более новые активные частицы, чем вход в стадию); * Перенос цепи (стадия распространения, в которой активная частица представляет собой растущую полимерную цепь, которая реагирует с образованием неактивного полимера, рост которого заканчивается, и активной небольшой частицы (такой как радикал), которая затем может реагировать с образованием новой полимерной цепи).
  • Прекращение (элементарная стадия, на которой активная частица теряет свою активность, например, путем рекомбинации двух свободных радикалов).

Длина цепи определяется как среднее количество повторений цикла распространения и равно общей скорости реакции, деленной на скорость инициирования.

Некоторые цепные реакции имеют сложные уравнения скорости с дробным порядком или смешанной кинетикой порядка.

Подробный пример: реакция водород-бромин

Реакция H 2 + Br 2 → 2 HBr протекает по следующему механизму:

  • инициирование
Br 2 → 2 Br (термический) или Br 2 + hν → 2 Br (фотохимический) Каждый атом Br является свободным радикалом, обозначаемым символом « », представляющим собой неспаренный электрон.
  • Распространение (цикл из двух этапов)
Br + H 2 → HBr + H H + Br 2 → HBr + Br Сумма этих двух этапов соответствует общей реакции H 2 + Br 2 → 2 HBr, причем катализатором является Br ·, который участвует в первой стадии и регенерируется на второй стадии.
  • Замедление (торможение)
H + HBr → H 2 + Br Этот шаг специфичен для этого примера и соответствует первому шагу распространения в обратном направлении.
  • Окончание 2 Br → Br 2
Рекомбинации двух радикалов, соответствующих в этом примере инициации в обратном направлении.

Как можно объяснить с помощью стационарного приближения, тепловая реакция имеет начальную скорость дробного порядка (3/2) и полное уравнение скорости с двухчленным знаменателем (кинетика смешанного порядка).

Ядерные цепные реакции

Ядерная цепная реакция была предложена Лео Сциллардом в 1933 году, вскоре после открытия нейтрона, но более чем за пять лет до того, как ядерное деление было впервые обнаружено. Силард знал химические цепные реакции, и он читал о ядерной энергии, производящей энергию, в которой участвуют высокоэнергичные протоны, бомбардирующие литий, продемонстрированные Джоном Кокрофтом и Эрнестом Уолтоном в 1932 году. Теперь Силард предложил использовать нейтроны, теоретически полученные из определенных ядер Реакции в более легких изотопах, чтобы вызвать дальнейшие реакции в легких изотопах, которые дали больше нейтронов. Это теоретически привело бы к цепной реакции на уровне ядра. Он не рассматривал деление как одну из этих реакций, производящих нейтроны, так как эта реакция не была известна в то время. Эксперименты, которые он предложил использовать бериллий и индий, потерпели неудачу.

Позднее, после того, как деление было открыто в 1938 году, Силард сразу осознал возможность использования нейтронного деления как особой ядерной реакции, необходимой для создания цепной реакции, пока деление также дает нейтроны. В 1939 году Сильбард с Энрико Ферми доказал эту реакцию размножения нейтронов в уране. В этой реакции нейтрон плюс делящийся атом вызывает деление, приводящее к большему числу нейтронов, чем одно, которое было израсходовано в начальной реакции. Так родилась практическая ядерная цепная реакция по механизму нейтронного деления ядер.

В частности, если один или несколько из произведенных нейтронов взаимодействуют с другими делящимися ядрами и они также подвергаются делению, то существует вероятность того, что макроскопическая общая реакция деления не прекратится, а продолжится по всему материалу реакции. Это тогда является самораспространяющейся и, таким образом, самоподдерживающейся цепной реакцией. Это принцип для ядерных реакторов и атомных бомб.

Демонстрация самоподдерживающейся цепной ядерной реакции была выполнена Энрико Ферми и другими, в успешной эксплуатации первого искусственного ядерного реактора Chicago Pile-1 в конце 1942 года.