Компьютер

Радиация: Естественный фон, безопасная доза, виды излучений, единицы измерения. Единица измерения Зиверт. Опасные и повседневные уровни радиации Источники радиации и единицы ее измерения

Навигация по статье:

В каких единицах измеряется радиация и какие допустимые дозы безопасны для человека. Какой радиационный фон является естественным, а какой допустимым. Как перевести одни единицы измерения радиации в другие.

Допустимые дозы радиации

  • допустимый уровень радиоактивного излучения от естественных источников излучения , иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем

    0,57 мкЗв/час

  • В последующие года, радиационный фон должен быть не выше  0,12 мкЗв/час


  • предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников , является

Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.

В чем измеряется радиация

Для оценки физических свойств радиоактивных материалов применяются такие величины как:

  • активность радиоактивного источника (Ки или Бк)
  • плотность потока энергии (Вт/м 2)

Для оценки влияния радиации на вещество (не живые ткани) , применяются:

  • поглощенная доза (Грей или Рад)
  • экспозиционная доза (Кл/кг или Рентген)

Для оценки влияния радиации на живые ткани , применяются:

  • эквивалентная доза (Зв или бэр)
  • эффективная эквивалентная доза (Зв или бэр)
  • мощность эквивалентной дозы (Зв/час)

Оценка действия радиации на не живые объекты

Действие радиации на вещество проявляется в виде энергии, которую вещество получает от радиоактивного излучения, и чем больше вещество поглотит этой энергии, тем сильнее действие радиации на вещество. Количество энергии радиоактивного излучения, воздействующего на вещество, оценивается в дозах, а количество поглощенной веществом энергии называется - поглощенной дозой .

Поглощенная доза - это количество радиации, которое поглощено веществом. В системе СИ для измерения поглощенной дозы используется - Грей (Гр).

1 Грей - это количество энергии радиоактивного излучения в 1 Дж, которая поглощена веществом массой в 1 кг, независимо от вида радиоактивного излучения и его энергии.

1 Грей (Гр) = 1Дж/кг = 100 рад

Данная величина не учитывает степень воздействия (ионизации) на вещество различных видов радиации. Более информативная величина, это экспозиционная доза радиации.

Экспозиционная доза - это величина, характеризующая поглощённую дозу радиации и степень ионизации вещества. В системе СИ для измерения экспозиционной дозы используется - Кулон/кг (Кл/кг) .

1 Кл/кг= 3,88*10 3 Р

Используемая внесистемная единица экспозиционной дозы - Рентген (Р):

1 Р = 2,57976*10 -4 Кл/кг

Доза в 1 Рентген - это образование 2,083*10 9 пар ионов на 1см 3 воздуха

Оценка действия радиации на живые организмы

Если живые ткани облучить разными видами радиации, имеющими одинаковую энергию, то последствия для живой ткани будут сильно отличаться в зависимости от вида радиоактивного излучения. Например, последствия от воздействия альфа излучения с энергией в 1 Дж на 1 кг вещества будут сильно отличаться от последствий воздействия энергии в 1 Дж на 1 кг вещества, но только гамма излучения . То есть при одинаковой поглощенной дозе радиации, но только от разных видов радиоактивного излучения, последствия будут разными. То есть для оценки влияния радиации на живой организм недостаточно просто понятия поглощенной или экспозиционной дозы радиации. Поэтому для живых тканей было введено понятие эквивалентной дозы.

Эквивалентная доза - это поглощённая живой тканью доза радиации, умноженная на коэффициент k, учитывающий степень опасности различных видов радиации. В системе СИ для измерения эквивалентной дозы используется - Зиверт (Зв) .

Используемая внесистемная единица эквивалентной дозы - Бэр (бэр) : 1 Зв = 100 бэр.


Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы , осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.

Для более лучшего понимания, можно немного по-другому дать определение "эквивалентной дозы радиации":

Эквивалентная доза радиации - это количество энергии поглощённое живой тканью (поглощенная доза в Грей, рад или Дж/кг) от радиоактивного излучения с учетом степени воздействия (наносимого вреда) этой энергии на живые ткани (коэффициент К).



В России, с момента аварии в Чернобыле, наибольшее распространение имела внесистемная единица измерения мкР/час, отражающая экспозиционная дозу , которая характеризует меру ионизации вещества и поглощенную им дозу. Данная величина не учитывает различия в воздействии разных видов радиации (альфа, бета, нейтронного, гама, рентгеновского) на живой организм.

Наиболее объективная характеристика это - эквивалентная доза радиации , измеряемая в Зивертах. Для оценки биологического действия радиации в основном применяется мощность эквивалентной дозы радиации, измеряемая в Зивертах в час. То есть это оценка воздействия радиации на организм человека за единицу времени, в данном случае за час. Учитывая, что 1 Зиверт это значительная доза радиации, для удобства применяют кратную ей величину, указываемую в микро Зивертах - мкЗв/час:

1 Зв/час = 1000 мЗв/час = 1 000 000 мкЗв/час.

Могут применяться величины, характеризующие воздействия радиации за более длительный период, например, за 1 год.

К примеру, в нормах радиационной безопасности НРБ-99/2009 (пункты 3.1.2, 5.2.1, 5.4.4), указана норма допустимого воздействия радиации для населения от техногенных источников 1 мЗв/год .

В нормативных документах СП 2.6.1.2612-10 (пункт 5.1.2) и СанПиН 2.6.1.2800-10 (пункт 4.1.3) указаны приемлемые нормы для естественных источников радиоактивного излучения , величиной 5 мЗв/год . Используемая формулировка в документах - "приемлемый уровень" , очень удачная, потому что он не допустимый (то есть безопасный), а именно приемлемый .

Но в нормативных документах есть противоречия по допустимому уровню радиации от природных источников . Если просуммировать все допустимые нормы, указанные в нормативных документах (МУ 2.6.1.1088-02, СанПиН 2.6.1.2800-10, СанПиН 2.6.1.2523-09), по каждому отдельному природному источнику излучения, то получим, что радиационный фон от всех природных источников радиации (включая редчайший газ радон) не должен составлять более 2,346 мЗв/год или 0,268 мкЗв/час . Это подробно рассмотрено в статье . Однако в нормативных документах СП 2.6.1.2612-10 и СанПиН 2.6.1.2800-10 указана приемлемая норма для природных источников радиации в 5 мЗв/год или 0,57 мкЗ/час.

Как видите, разница в 2 раза. То есть к допустимому нормативному значению 0,268 мкЗв/час, без всяких обоснований применен повышающий коэффициент 2. Это скорее всего связано с тем, что нас в современном мире стали массово окружать материалы (прежде всего строительные материалы) содержащие радиоактивные элементы.

Обратите внимание, что в соответствии с нормативными документами, допустимый уровень радиации от естественных источников излучения 5 мЗв/год , а от искусственных (техногенных) источников радиоактивного излучения всего 1 мЗв/год.

Получается, что при уровне радиоактивного излучения от искусственных источников свыше 1 мЗв/год могут наступить негативные воздействия на человека, то есть привести к заболеваниям. Одновременно нормы допускают, что человек может жить без вреда для здоровья в районах, где уровень выше безопасного техногенного воздействия радиации в 5 раз, что соответствует допустимому уровню радиоактивного естественного фона в 5мЗв/год.

По механизму своего воздействия, видам излучения радиации и степени ее действия на живой организм, естественные и техногенные источники радиации не отличаются .

Все же, о чем говорят эти нормы? Давайте рассмотрим:

  • норма в 5 мЗв/год, указывает, что человек в течении года может максимально получить суммарную дозу радиации, поглощённую его телом в 5 мили Зиверт. В эту дозу не входят все источники техногенного воздействия, такие как медицинские, от загрязнения окружающей среды радиоактивными отходами, утечки радиации на АЭС и т.д.
  • для оценки, какая доза радиации допустима в виде фонового излучения в данный момент, посчитаем: общую годовую норму в 5000 мкЗв (5 мЗв) делим на 365 дней в году, делим на 24 часа в сутки, получим 5000/365/24 = 0,57 мкЗв/час
  • полученное значение 0,57 мкЗв/час, это предельно допустимое фоновое излучение от природных источников, которое считается приемлемым.
  • в среднем радиоактивный фон (он давно уже не естественный) колеблется в пределах 0,11 - 0,16 мкЗв/час. Это нормальный фон радиации.

Можно подвести итог по допустимым уровням радиации, действующим на сегодняшний день:

  • По нормативной документации, предельно допустимый уровень радиации (радиационный фон) от природных источников излучения может составлять 0,57 мкЗ/час .
  • Если не учитывать не обоснованный повышающий коэффициент, а также не учитывать действие редчайшего газа - радона, то получим, что в соответствии с нормативной документацией, нормальный радиационный фон от природных источников радиации не должен превышать 0,07 мкЗв/час
  • предельно допустимой нормативной суммарной дозой, полученной от всех техногенных источников , является 1 мЗв/год.

Можно с уверенность утверждать, что нормальный, безопасный радиационный фон в пределах 0,07 мкЗв/час , действовал на нашей планете до начала промышленного применения человеком радиоактивных материалов, атомной энергетики и атомного оружия (ядерные испытания).

А в результате деятельности человека, мы теперь считаем приемлемым радиационный фон в 8 раз превышающий естественное значение.

Стоит задуматься, что до начала активного освоения человеком атома, человечество не знало, что такое раковые заболевания в таком массовом количестве, как это происходит в современном мире. Если до 1945 года в мире регистрировались раковые заболевания, то их можно было считать единичными случаями по сравнению со статистикой после 1945 года.

Задумайтесь , по данным ВОЗ (всемирной организации здравоохранения), только в 2014 году на нашей планете умерли около 10 000 000 человек от раковых заболеваний, это почти 25% от общего количества умерших, то есть фактически каждый четвертый умерший на нашей планете, это человек умерший от ракового заболевания.

Так же по данным ВОЗ, ожидается, что в ближайшие 20 лет, число новых случаев заболевания раком будет увеличено примерно на 70% по сравнению с сегодняшним днем. То есть рак станет основной причиной смертности. И как бы тщательно, правительство государств с атомной энергетикой и атомным оружием, не маскировали бы общую статистику по причинам смертности от раковых заболеваний. Можно уверенно утверждать, что основной причиной раковых заболеваний, является воздействие на организм человека радиоактивных элементов и излучений.

Для справки:

Для перевода мкР/час в мкЗв/час можно воспользоваться упрощенной формулой перевода:

1 мкР/час = 0,01 мкЗв/час

1 мкЗв/час = 100 мкР/час

0,10 мкЗв/час = 10 мкР/час

Указанные формулы перевода - это допущения, так как мкР/час и мкЗв/час характеризуют разные величины, в первом случае это степень ионизации вещества, во втором это поглощённая доза живой тканью. Данный перевод не корректен, но он позволяет хотя бы приблизительно оценить риск.

Перевод величин радиации

Для перевода величин, введите в поле нужное значение и выберете исходную единицу измерения. После ввода значения, остальные величины в таблице будут вычислены автоматически.

Радиоактивность вещества характеризуется количеством распадов в единицу времени. Чем большее число распадов происходит в единицу времени, тем выше активность вещества. Скорость радиоактивного распада определяется величиной периода полураспада (Т), т. е. промежутком времени, в течение которого активность радиоактивного элемента уменьшается наполовину. Для каждого изотопа скорость радиоактивного распада, как будет показано ниже, весьма важный показатель для гигиенической оценки условий труда и выбора специальных мер защиты.

Для измерения радиоактивности принята единица - распад в секунду, а также внесистемная единица - кюри (к), т. е. активность такого количества радиоактивного вещества, в котором происходит 3,7·10 10 распадов в 1 секунду. В практике применяются единицы, производные от кюри: милликюри (мк), микрокюри (мкк). Концентрация радиоактивных веществ в воздухе и воде измеряется в кюри на 1 л - к/л.

Гамма-активность выражается в миллиграмм-эквивалентах радия. Он представляет собой гамма-эквивалент радиоактивного препарата, ү-излучение которого при тождественных условиях создает такую же мощность дозы, что и ү-излучение 1 мг радия Государственного эталона радия СССР при платиновом фильтре толщиной 0,5 мм. Точечный источник в 1 мг радия в равновесии с продуктами распада после фильтрации через платиновый фильтр толщиной 0,5 мм платины создает на расстоянии 1 см в воздухе мощность дозы 8,4 р в час.

За единицу дозы рентгеновых лучей и ү-лучей принят рентген (р). Один рентген - доза, которая в 1 см 2 воздуха при 0° и давлении 760 мм рт. ст. образует ионы с суммарным зарядом в одну электростатическую единицу количества электричества каждого знака. В практике пользуются производными рентгена: 1 р = 10 3 мр (миллирентген) = 10 6 мкр (микрорентген). Для характеристики распределения дозы во времени вводится понятие мощности дозы: р/час, р/мин, р/сек, мр/час, мр/мин, мр/сек и т. д.

Раньше в качестве единицы поглощенной дозы и дозы излучения (для всех видов излучения) использовали физический эквивалент рентгена (фэр). Фэр - доза любого ионизирующего излучения, при которой энергия, поглощенная в 1 г вещества, равна потере энергии на ионизацию, создаваемую в нем дозой 1 р рентгеновых лучей или у-лучей; 1 фэр для воздуха равен 84 эрг/г, для биологических тканей- 93 эрг/г.

При одной и той же поглощенной дозе биологический эффект разных видов излучения неодинаков; его можно выразить следующими величинами (относительная биологическая эффективность - обэ):

Таким образом, биологический эффект воздействия а-излучения в 10 раз, тепловых нейтронов - в 3 раза, быстрых нейтронов и протонов - в 10 раз больше, чем эффект воздействия у- и рентгеновых лучей.

Различный биологический эффект в основном зависит от плотности ионизации, создаваемой в тканях тем или иным ионизирующим излучением. По предложению Международного конгресса радиологов в 1953 г. за единицу поглощенной дозы энергии ионизирующего излучения в единице массы облучаемого вещества была принята единица рад. Для всех видов ионизирующей радиации рад соответствует поглощенной энергии 100 эрг на 1 г любого вещества. Для учета биологического действия различных видов излучения введена другая единица - биологический эквивалент рада - бэр. За 1 бэр принимается такая поглощенная доза любого вида ионизирующих излучений, которая вызывает такой же биологический эффект, что и 1 рад рентгеновых или ү-лучей.

Термин «относительная биологическая эффективность» используется обычно при сравнительной оценке действия излучений в радиобиологии. Так как значение обэ зависит от целого ряда причин - энергии излучения, критериев биологического действия и др., при решении задач радиационной безопасности используют так называемые коэффициенты качества - КК, которые представляют собой величины, показывающие зависимость биологического эффекта хронического облучения организма от передачи энергии на единицу длины пробега частицы или кванта. Для определения поглощенной дозы в бэр (Дбэр) необходимо дозу в рад (Драд) умножить на коэффициент качества и коэффициент распределения (КР), учитывающий влияние неоднородного распределения радиоактивных изотопов.

Дбэр = Драд · КК · КР.

Загрязненность рабочих поверхностей и оборудования, рук, спецодежды и других предметов α- и β-излучателями выражается в числе частиц, вылетающих с площади 1 см 2 в 1 минуту.

Радиация уже давно не является чем-то неведомым для человека. В современном мире о ней известно если не все, то довольно много. Ученые постоянно изучают данное излучение, чтобы сделать его как можно более безопасным для человека. Ведь до страшной трагедии на Чернобыльской АЭС мало кто представлял, насколько губительным может быть излучение от высвободившейся в результате атомной реакции энергии. С этого момента в СССР каждый человек должен был знать, в чем измеряется радиация и как минимизировать вред, наносимый ею организму.

Радиация: что это такое?

В переводе с латинского языка слово "радиация" означает "сияние". Под этот термин попадает общее понимание распространения энергии в пространстве в виде различных волн и частиц. Ученые относят к радиации УФ-излучение, тепловое или световое. Они в ограниченной дозировке безвредны для человека. А вот ионизирующее является серьезным источником опасности для всех живых организмов на планете, его обычно и имеют в виду, когда говорят о радиации.

Ионизирующее излучение: описание

Ионизирующее излучение можно представить в виде потока частиц, способных ионизировать все живое и неживое. В процессе воздействия на биологические организмы разного рода происходит высвобождение свободных радикалов, которые разрушают белковые связи и приводят к необратимым изменениям, называемым мутациями. В случаях больших доз ионизирующего излучения возникает лучевая болезнь, характеризующаяся полным разрушением внутренних органов и в большинстве случаев приводящая к смерти. Ионизирующее излучение одинаково губительно действует на все живые организмы без исключения. Ученые до сих пор изучают все аспекты влияния радиации на человека и животных.

Радиоактивность возникает по причине разрушения ядер в атомных частицах, в результате этого процесса высвобождается большое количество излучения. Опасность радиации заключается в том, что ее нельзя увидеть глазом. Она не пахнет и в первое время ее воздействие на организм практически незаметно. Если вы не знаете, в каких единицах измеряется радиация и как ее измерить, то можете долго находиться в неведении по поводу оказывающегося на вас губительного влияния.

Виды ионизирующего излучения

Чтобы понять, в чем измеряется уровень радиации, нужно прежде всего выяснить, о каком виде излучения идет речь. Дело в том, что ионизирующее излучение бывает нескольких видов:

  • альфа-лучи - практически безопасны на расстоянии двух-трех метров, в этом случае радиация не может проникнуть через кожные покровы;
  • бета-лучи - от них можно защититься расстоянием и несколькими слоями одежды, но при близком контакте радиация имеет высокую проникающую способность;
  • гамма- и рентгеновское излучение - оно отличается высокой проникаемостью, при близком контакте полностью просвечивает тело человека (защититься от него можно расстоянием и предметами, содержащими нефтепродукты);
  • нейтронное - является одним из самых опасных для человека, так как имеет высокую проникающую способность.

Каждое из видов излучения при большой дозировке приносит вред организму. Но ученые до сих пор не могут точно сказать, какие лучи безопасны для организма, хотя общие показатели допустимых норм все-таки выведены. Немного позже мы вернемся к вопросу допустимой дозировки и выясним, в чем измеряется доза радиации.

Радиация и радиоактивность: определение и различия

Прежде чем разбираться с вопросом о том, как и в чем измеряется радиация, нужно лучше понимать связанную с этой темой терминологию. Дело в том, что многие часто путают понятия "радиация" и "радиоактивность". Несмотря на схожесть, между этими терминам есть существенные различия.

Радиацию можно представить как поток частиц, находящихся в окружающем пространстве. До того как на пути повстречается какой-либо предмет, излучение будет произвольно распределяться в пространстве. А вот под радиоактивностью понимается способность предмета поглощать излучение и в дальнейшем самостоятельно испускать его.

Источники радиации

Если все вышенаписанное вас напугало, и вы забеспокоились о радиационном фоне вокруг вас, значит, вам пора узнать, в чем измеряется радиация. Но не стоит паниковать. Имейте в виду, что вокруг нас масса источников радиации. И далеко не все они вредят нашему организму. Практически все предметы на планете Земля радиоактивны - это их естественное состояние. Вообще, все источники радиации делятся на:

  • естественные;
  • искусственные.

О них мы сейчас и поговорим более подробно.

Естественные источники

Естественная радиоактивность свойственна всем планетам солнечной системы. Мы в той или иной мере получаем определенные дозы облучения, которые не наносят нашему организму существенного вреда. Хотя в последние годы ученые склоняются к выводу, что даже естественная радиоактивность, ежедневно влияющая на людей, вносит свои коррективы в развитие некоторых заболеваний. По одной из версий, в районах с повышенным естественным радиационным фоном статистика онкологических заболеваний на несколько процентов выше, чем в других частях планеты. Что же служит источником естественной радиации? И в чем измеряется радиация?

Ученые выделяют три вида естественной радиации:

1. Солнечная и космическая

Космос и наше Солнце являются мощнейшим источником радиации. Она обрушивается на Землю мощным беспрерывным потоком, единственной защитой для всего живого на планете является атмосфера. Она выступает в роли барьера и допускает до поверхности планеты только незначительные дозы радиации. Но чем выше человек находится над уровнем моря, тем большую дозу облучения он получает. По некоторым данным, доза радиации во время полета на самолете до десяти раз превышает норму.

Ни для кого не секрет, что земная кора содержит большое количество радиоактивных веществ. Они располагаются в недрах планеты и попадают на поверхность в основном в связи с добычей полезных ископаемых. Довольно часто современные строительные материалы обладают повышенной радиоактивностью, этим же отличаются и многие удобрения для почвы. В связи с этим человек может получать внешнее и внутреннее облучение.

3. Газ радон

О пользе и вреде радона написано уже достаточно научных трудов и книг. Он представляет собой тяжелый газ, находящийся в недрах земли. Через трещины в земной коре он выходит на поверхность и скапливается в некоторых местах. В больших количествах он очень опасен для человека. В современные дома он попадает из глубоководных скважин, трещин и скапливается в подвалах или на первых этажах многоэтажек. Специалисты советуют чаще проветривать помещения, чтобы снизить концентрацию радона и обезопасить себя от последствий его воздействия.

Искусственные источники

Деятельность человека в век высоких технологий часто сопровождается созданием искусственных источников радиации. Они используются во многих отраслях медицины и промышленности, современные военные технологии тоже уже невозможно представить без использования атомной энергетики.

Довольно часто люди не знают, насколько близко они находятся от источников подобной радиации. К примеру, многие компании скрывают от СМИ расположение полигонов, где захоронены ядерные отходы. Возле них вполне могут быть построены загородные поселки или дачные домики.

Единственным способом получить нужную информацию и оградить семью от проживания в опасном районе является замер радиоактивного фона специальными приборами, предназначенными для этих целей. Перед покупкой такого прибора необходимо выяснить несколько нюансов, в частности узнать, каковы допустимые дозы облучения и в чем измеряется радиация. Единицы измерения ионизирующего излучения должны быть известны всем современным людям. Об этом мы сейчас и поговорим более подробно.

В чем измеряется радиация: единицы

Нельзя говорить отдельно о единицах измерения радиации, не упоминая дозу излучения. Эти понятия очень тесно связаны и постоянно пересекаются. Дозой радиации принято считать количество излучения, поглощенного организмом. Дозы отличаются между собой единицами измерения и качеством излучаемых волн. К примеру, воздействие гамма-лучей принято измерять в Рентгенах, довольно часто указывается и промежуток времени, в который происходило воздействие - час или минута.

Существует поглощенная веществом доза - она измеряется в Грэях. По ней можно определить степень вреда, который нанесло излучение тканям живого организма. Чаще всего, говоря о радиации и ее дозах, люди хотят выяснить именно степень опасности для себя и своих близких. В этом случае рассчитывается поглощенная доза радиации с умножением на коэффициент, который учитывает степень вреда различных видов излучения. Единицей измерения эквивалентной дозы является Зиверт. Это достаточно крупная величина, поэтому в науке довольно часто применяют микро-Зиверты. К примеру, один Зиверт равен ста Рентгенам.

Помогают в определении радиации дозиметры. Они бывают промышленного и бытового назначения. В продаже находятся в основном бытовые приборы, они доступны абсолютно каждому человеку. По их данным каждый самостоятельно определяет опасность для себя исходя из допустимого уровня радиации, который зафиксирован в законодательной базе каждого государства. В России естественный радиоактивный фон не может превышать 0,57 микро-Зиверта в час, а максимально безвредная доза облучения за год приравнивается к одному микро-Зиверту в час. В этот показатель входит естественное облучение и то, которое человек получает в результате прохождения различных медицинских процедур или в связи с профессиональной деятельностью.

В каких единицах измеряется солнечная радиация?

Для нашего светила не подходит система вычислений, которую мы уже описали. Давайте выясним, в чем измеряется солнечная радиация. Ученые так называют поток энергии, который преобразовывается в тепло. Поэтому и измеряют его в калориях или Ваттах. При этом за основу берется количество энергии, попадающей на один квадратный сантиметр либо метр поверхности за одну минуту. Ученые вывели некоторую солнечную постоянную - 1328 Ватт на квадратный метр, от которой отталкиваются в определении солнечной активности. Но на самом деле данная постоянная не является стабильной, она все время меняется и используется только для приблизительных расчетов.

Не стоит жить в страхе радиоактивного воздействия - оно будет присутствовать в нашей жизни постоянно. Поэтому каждый ответственный человек должен научиться соседствовать с данным явлением и, конечно же, постоянно измерять радиационный фон дозиметром. Данный прибор должен быть в любой семье.

Радиацией (или ионизирующим излучением) называется совокупность разных видов физических полей и микрочастиц, которые имеют способности ионизировать вещества.

Радиация делится на несколько видов и измеряется при помощи различных научных приборов, специально разработанных для этих целей.

Кроме того, существуют единицы измерения, превышающие показатели которых могут быть смертельными для человека.

Наиболее точные и достоверные способы измерения радиации

При помощи дозиметра (радиометра) можно максимально точно измерить интенсивность радиации, произвести обследование определенного места или конкретных предметов. Чаще всего приборы для измерения уровня радиации используют в местах:

  1. Приближенных к районам радиационного излучения (например, рядом с ЧАЭС).
  2. Планируемого строительства жилого типа.
  3. В необследованных, неизведанных местностях во время походов, путешествий.
  4. При потенциальной покупке объектов жилого фонда.

Так как очищение от радиации территории и предметов, находящихся на ней, является невозможным (растений, мебели, оборудования, конструкций), то единственный верный способ обезопасить себя – вовремя проверить уровень опасности и по возможности держаться от источников и зараженных участков как можно дальше. Поэтому в обычных условиях для проверки местности, продуктов, предметов обихода можно применять бытовые дозиметры, успешно выявляющие опасность и ее дозы.

Нормирование радиации

Целью контроля радиации является не просто измерение ее уровня, но и определение соответствий показателей установленным нормам. Критерии и нормативы безопасного уровня радиационного излучения прописаны в отдельных законах и общеустановленных правилах. Условия содержания техногенных и радиоактивных веществ регламентируются для следующих категорий:

  • Продуктов питания
  • Воздуха
  • Строительных материалов
  • Компьютерной техники
  • Медицинского оборудования.

Производители многих видов продуктовых или промышленных товаров обязаны по закону прописывать в условиях и сертификационных документах критерии и показатели соответствия радиационной безопасности. Соответствующие государственные службы довольно строго отслеживают различные отклонения или нарушения в этом плане.

Единицы измерения радиации

Уже давно доказано, что радиационный фон присутствует практически везде, просто в большинстве мест его уровень признается безопасным. Уровень радиации измеряется в определенных показателях, среди которых основными считаются дозы – единицы энергии, поглощаемые веществом в момент прохождения ионизирующего излучения через него.

Основные виды доз и единицы их измерения можно перечислить в таких определениях:

  1. Доза экспозиционная – создается при гамма- или рентгеновском излучении и показывает степень ионизации воздуха; внесистемные единицы измерения – бэр или «рентген», в международной системе СИ классифицируется как «кулон на кг»;
  2. Поглощенная доза – единица измерения – грэй;
  3. Эффективная доза – определяется в индивидуальном порядке для каждого органа;
  4. Доза эквивалентная – в зависимости от разновидности излучения, рассчитывается исходя из коэффициентов.

Радиационное излучение может быть определено только и приборов. При этом существуют определенные дозы и установленные нормы, среди которых строго конкретизированы допустимые показатели, негативные дозы воздействия на человеческий организм и смертельные дозы.

Уровни безопасности радиационного излучения

Для населения установлены определенные уровни безопасных величин поглощаемых доз излучения, которые измеряются дозиметром.

На каждой территории есть свой естественный радиационный фон, но безопасным для населения считается величина, равная приблизительно 0,5 микрозиверт (µЗв) в час (до 50 микрорентген в час). При нормальном радиационном фоне наиболее безопасным уровнем внешнего облучения человеческого тела считается величина до 0,2 (µЗв) микрозиверт в час (значение, равное 20 микрорентгенам в час).

Самый верхний предел допустимого радиационного уровня – 0.5 µЗв — или 50 мкР/ч .

Соответственно, человек может перенести излучение, мощность которого составляет 10 мкЗ/ч (микрозиверт), а при сокращении времени воздействия до минимума, безвредно излучение в несколько миллизивертов в час. Так воздействует флюорография, рентген – до 3 мЗв. Снимок больного зуба у стоматолога – 0,2 мЗв. Поглощаемая доза облучения имеет способность накапливаться в течение жизни, но сумма не должна пересекать порог в 100-700 мЗв.

Многие сталкиваются с трудностями при определении единиц измерения радиоактивного излучения и практическом использовании полученных значений. Сложности возникают не только из-за их большого разнообразия: беккерели, кюри, зиверты, рентгены, рады, кулоны, ремы и др., но и из-за того, что не все используемые величины связаны между собой кратными соотношениями и при необходимости могут переводиться из одних в другие.

Как разобраться?

Все довольно просто, если отдельно рассматривать единицы, связанные с радиоактивностью, как физическим явлением, и величины, измеряющие воздействие этого явления (ионизирующего излучения) на живые организмы и окружающую среду. А также, если не забывать о внесистемных единицах и единицах радиоактивности, действующих в системе СИ (Международная система единиц), которая была введена в 1982 году и обязательна к использованию во всех учреждениях и предприятиях.

Внесистемная (старая) единица измерения радиоактивности

Кюри (Ки) - первая единица радиоактивности, измеряющая активность 1 грамма чистого радия. Введенная с 1910 года и названная в честь французских ученых К. и М. Кюри, она не связана с какой-либо системой измерения и в последнее время утратила свое практическое значение. В России же кюри, несмотря на действующую систему СИ, разрешенная к использованию в области ядерной физики и медицины без срока ограничения.

Единицы радиоактивности в системе СИ

В СИ используется другая величина - беккерель (Бк), которая определяет распад одного ядра в секунду. Беккерель более удобен в расчетах, чем кюри, поскольку имеет не такие большие значения и позволяет без сложных математических действий по радиоактивности радионуклида определить его количество. Высчитав количество распадов 1 г радона, легко установить соотношение между Ки и Бк: 1 Ки = 3,7*1010 Бк, а также определить активность любого другого радиоактивного элемента.

Измерение ионизирующих излучений

С открытием радия было обнаружено, что излучение радиоактивных веществ влияет на живые организмы и вызывает биологические эффекты, сходные с действием рентгеновского облучения. Появилось такое понятие, как доза ионизирующего излучения - величина, которая позволяет оценивать воздействие радиационного облучения на организмы и вещества. В зависимости от особенностей облучения, выделяют эквивалентную, поглощенную и экспозиционную дозы:

  1. Экспозиционная доза - показатель ионизации воздуха, возникающей под действием гамма- и рентгеновских лучей, определяется количеством образовавшихся ионов радионуклидов в 1 куб. см. воздуха при нормальных условиях. В системе СИ она измеряется в кулонах (Кл), но существует и внесистемная единица - рентген (Р). Один рентген - большая величина, поэтому удобнее на практике использовать ее миллионную (мкР) или тысячную (мР) доли. Между единицами экспозиционной дозы установлено следующее соотношения: 1 Р = 2, 58.10-4 Кл/кг.
  2. Поглощенная доза - энергия альфа-, бета- и гамма-излучения, поглощенная и накопленная единицей массы вещества. В международной системе СИ для нее введена следующая единица измерения - грей (Гр), хотя до сих пор в отдельных областях, например в радиационной гигиене и в радиобиологии широко используется внесистемная единица - рад (Р). Между этими величинами имеется такое соответствие: 1 Рад = 10-2 Гр.
  3. Эквивалентная доза - поглощенная доза ионизирующего излучения, учитывающая степень его воздействия на живую ткань. Поскольку одинаковые дозы альфа-, бета- или гамма-излучения оказывают разный биологический ущерб, введен так называемый КК -коэффициент качества. Для получения эквивалентной дозы необходимо поглощенную дозу, полученную от определенного вида излучения, умножить на этот коэффициент. Измеряется эквивалентная доза в берах (Бэр) и зивертах (Зв), обе эти единицы взаимозаменяемы, переводятся из одной в другую таким образом: 1 Зв = 100 Бэр (Рем).

В системе СИ используется зиверт - эквивалентная доза конкретного ионизирующего излучения, поглощенная одним килограммом биологической ткани. Для пересчета греев в зиверты следует учесть коэффициент относительной биологической активности (ОБЭ), который равен:

  • для альфа-частиц - 10-20;
  • для гамма- и бета-излучения - 1;
  • для протонов - 5-10;
  • для нейтронов со скоростью до 10 кэВ - 3-5;
  • для нейтронов со скоростью больше 10 кэВ: 10-20;
  • для тяжелых ядер - 20.

Бэр (биологический эквивалент рентгена) или рем (в английском языке rem - Roentgen Equivalent of Man) - внесистемная единица эквивалентной дозы. Поскольку альфа-излучение наносит больший ущерб, то для получения результата в ремах, необходимо измеренную радиоактивность в радах умножить на коэффициент, равный двадцати. При определении гамма- или бета-излучения перевод величин не требуется, поскольку ремы и рады равны друг другу.