Children

How to solve the equation. Solution of exponential equations. Examples. Identity transformations of equations

Quadratic equations are studied in grade 8, so there is nothing complicated here. The ability to solve them is essential.

A quadratic equation is an equation of the form ax 2 + bx + c = 0, where the coefficients a , b and c are arbitrary numbers, and a ≠ 0.

Before studying specific solution methods, we note that all quadratic equations can be divided into three classes:

  1. Have no roots;
  2. They have exactly one root;
  3. They have two different roots.

This is an important difference between quadratic and linear equations, where the root always exists and is unique. How to determine how many roots an equation has? There is a wonderful thing for this - discriminant.

Discriminant

Let the quadratic equation ax 2 + bx + c = 0 be given. Then the discriminant is simply the number D = b 2 − 4ac .

This formula must be known by heart. Where it comes from is not important now. Another thing is important: by the sign of the discriminant, you can determine how many roots a quadratic equation has. Namely:

  1. If D< 0, корней нет;
  2. If D = 0, there is exactly one root;
  3. If D > 0, there will be two roots.

Please note: the discriminant indicates the number of roots, and not at all their signs, as for some reason many people think. Take a look at the examples and you will understand everything yourself:

Task. How many roots do quadratic equations have:

  1. x 2 - 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

We write the coefficients for the first equation and find the discriminant:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

So, the discriminant is positive, so the equation has two different roots. We analyze the second equation in the same way:
a = 5; b = 3; c = 7;
D \u003d 3 2 - 4 5 7 \u003d 9 - 140 \u003d -131.

The discriminant is negative, there are no roots. The last equation remains:
a = 1; b = -6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

The discriminant is equal to zero - the root will be one.

Note that coefficients have been written out for each equation. Yes, it's long, yes, it's tedious - but you won't mix up the odds and don't make stupid mistakes. Choose for yourself: speed or quality.

By the way, if you “fill your hand”, after a while you will no longer need to write out all the coefficients. You will perform such operations in your head. Most people start doing this somewhere after 50-70 solved equations - in general, not so much.

The roots of a quadratic equation

Now let's move on to the solution. If the discriminant D > 0, the roots can be found using the formulas:

The basic formula for the roots of a quadratic equation

When D = 0, you can use any of these formulas - you get the same number, which will be the answer. Finally, if D< 0, корней нет — ничего считать не надо.

  1. x 2 - 2x - 3 = 0;
  2. 15 - 2x - x2 = 0;
  3. x2 + 12x + 36 = 0.

First equation:
x 2 - 2x - 3 = 0 ⇒ a = 1; b = −2; c = -3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ the equation has two roots. Let's find them:

Second equation:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 (−1) 15 = 64.

D > 0 ⇒ the equation again has two roots. Let's find them

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(align)\]

Finally, the third equation:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ the equation has one root. Any formula can be used. For example, the first one:

As you can see from the examples, everything is very simple. If you know the formulas and be able to count, there will be no problems. Most often, errors occur when negative coefficients are substituted into the formula. Here, again, the technique described above will help: look at the formula literally, paint each step - and get rid of mistakes very soon.

Incomplete quadratic equations

It happens that the quadratic equation is somewhat different from what is given in the definition. For example:

  1. x2 + 9x = 0;
  2. x2 − 16 = 0.

It is easy to see that one of the terms is missing in these equations. Such quadratic equations are even easier to solve than standard ones: they do not even need to calculate the discriminant. So let's introduce a new concept:

The equation ax 2 + bx + c = 0 is called an incomplete quadratic equation if b = 0 or c = 0, i.e. the coefficient of the variable x or the free element is equal to zero.

Of course, a very difficult case is possible when both of these coefficients are equal to zero: b \u003d c \u003d 0. In this case, the equation takes the form ax 2 \u003d 0. Obviously, such an equation has a single root: x \u003d 0.

Let's consider other cases. Let b \u003d 0, then we get an incomplete quadratic equation of the form ax 2 + c \u003d 0. Let's slightly transform it:

Since the arithmetic square root exists only from a non-negative number, the last equality only makes sense when (−c / a ) ≥ 0. Conclusion:

  1. If an incomplete quadratic equation of the form ax 2 + c = 0 satisfies the inequality (−c / a) ≥ 0, there will be two roots. The formula is given above;
  2. If (−c / a )< 0, корней нет.

As you can see, the discriminant was not required - there are no complex calculations at all in incomplete quadratic equations. In fact, it is not even necessary to remember the inequality (−c / a ) ≥ 0. It is enough to express the value of x 2 and see what is on the other side of the equal sign. If there is a positive number, there will be two roots. If negative, there will be no roots at all.

Now let's deal with equations of the form ax 2 + bx = 0, in which the free element is equal to zero. Everything is simple here: there will always be two roots. It is enough to factorize the polynomial:

Taking the common factor out of the bracket

The product is equal to zero when at least one of the factors is equal to zero. This is where the roots come from. In conclusion, we will analyze several of these equations:

Task. Solve quadratic equations:

  1. x2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x 2 − 7x = 0 ⇒ x (x − 7) = 0 ⇒ x 1 = 0; x2 = −(−7)/1 = 7.

5x2 + 30 = 0 ⇒ 5x2 = -30 ⇒ x2 = -6. There are no roots, because the square cannot be equal to a negative number.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1.5; x 2 \u003d -1.5.

Service for solving equations online will help you solve any equation. Using our site, you will not only get the answer to the equation, but also see a detailed solution, that is, a step-by-step display of the process of obtaining the result. Our service will be useful for high school students and their parents. Students will be able to prepare for tests, exams, test their knowledge, and parents will be able to control the solution of mathematical equations by their children. The ability to solve equations is a mandatory requirement for students. The service will help you self-learn and improve your knowledge in the field of mathematical equations. With it, you can solve any equation: quadratic, cubic, irrational, trigonometric, etc. The benefit of the online service is invaluable, because in addition to the correct answer, you get a detailed solution to each equation. Benefits of solving equations online. You can solve any equation online on our website absolutely free of charge. The service is fully automatic, you do not have to install anything on your computer, you just need to enter the data and the program will issue a solution. Any calculation errors or typographical errors are excluded. It is very easy to solve any equation online with us, so be sure to use our site to solve any kind of equations. You only need to enter the data and the calculation will be completed in seconds. The program works independently, without human intervention, and you get an accurate and detailed answer. Solution of the equation in general form. In such an equation, the variable coefficients and the desired roots are interconnected. The highest power of a variable determines the order of such an equation. Based on this, various methods and theorems are used for equations to find solutions. Solving equations of this type means finding the desired roots in a general form. Our service allows you to solve even the most complex algebraic equation online. You can get both the general solution of the equation and the private one for the numerical values ​​of the coefficients you specified. To solve an algebraic equation on the site, it is enough to correctly fill in only two fields: the left and right parts of the given equation. Algebraic equations with variable coefficients have an infinite number of solutions, and by setting certain conditions, particular ones are selected from the set of solutions. Quadratic equation. The quadratic equation has the form ax^2+bx+c=0 for a>0. The solution of equations of a square form implies finding the values ​​of x, at which the equality ax ^ 2 + bx + c \u003d 0 is satisfied. To do this, the value of the discriminant is found by the formula D=b^2-4ac. If the discriminant is less than zero, then the equation has no real roots (the roots are from the field of complex numbers), if it is zero, then the equation has one real root, and if the discriminant is greater than zero, then the equation has two real roots, which are found by the formula: D \u003d -b + -sqrt / 2a. To solve a quadratic equation online, you just need to enter the coefficients of such an equation (whole numbers, fractions or decimal values). If there are subtraction signs in the equation, you must put a minus in front of the corresponding terms of the equation. You can also solve a quadratic equation online depending on the parameter, that is, the variables in the coefficients of the equation. Our online service for finding common solutions perfectly copes with this task. Linear equations. To solve linear equations (or systems of equations), four main methods are used in practice. Let's describe each method in detail. Substitution method. Solving equations using the substitution method requires expressing one variable in terms of the others. After that, the expression is substituted into other equations of the system. Hence the name of the solution method, that is, instead of a variable, its expression through the rest of the variables is substituted. In practice, the method requires complex calculations, although it is easy to understand, so solving such an equation online will save time and make calculations easier. You just need to specify the number of unknowns in the equation and fill in the data from linear equations, then the service will make the calculation. Gauss method. The method is based on the simplest transformations of the system in order to arrive at an equivalent triangular system. The unknowns are determined one by one from it. In practice, you need to solve such an equation online with a detailed description, thanks to which you will learn the Gauss method well for solving systems of linear equations. Write down the system of linear equations in the correct format and take into account the number of unknowns in order to correctly solve the system. Cramer's method. This method solves systems of equations in cases where the system has a unique solution. The main mathematical operation here is the calculation of matrix determinants. The solution of equations by the Cramer method is carried out online, you get the result instantly with a complete and detailed description. It is enough just to fill the system with coefficients and choose the number of unknown variables. matrix method. This method consists in collecting the coefficients of the unknowns in matrix A, the unknowns in column X, and the free terms in column B. Thus, the system of linear equations is reduced to a matrix equation of the form AxX=B. This equation has a unique solution only if the determinant of the matrix A is non-zero, otherwise the system has no solutions, or an infinite number of solutions. The solution of equations by the matrix method is to find the inverse matrix A.

In the 7th grade mathematics course, they first meet with equations with two variables, but they are studied only in the context of systems of equations with two unknowns. That is why a number of problems fall out of sight, in which certain conditions are introduced on the coefficients of the equation that limit them. In addition, methods for solving problems like “Solve an equation in natural or integer numbers” are also ignored, although problems of this kind are encountered more and more often in the USE materials and at entrance exams.

Which equation will be called an equation with two variables?

So, for example, the equations 5x + 2y = 10, x 2 + y 2 = 20, or xy = 12 are two-variable equations.

Consider the equation 2x - y = 1. It turns into a true equality at x = 2 and y = 3, so this pair of variable values ​​is the solution to the equation under consideration.

Thus, the solution of any equation with two variables is the set of ordered pairs (x; y), the values ​​of the variables that this equation turns into a true numerical equality.

An equation with two unknowns can:

A) have one solution. For example, the equation x 2 + 5y 2 = 0 has a unique solution (0; 0);

b) have multiple solutions. For example, (5 -|x|) 2 + (|y| – 2) 2 = 0 has 4 solutions: (5; 2), (-5; 2), (5; -2), (-5; - 2);

V) have no solutions. For example, the equation x 2 + y 2 + 1 = 0 has no solutions;

G) have infinitely many solutions. For example, x + y = 3. The solutions to this equation will be numbers whose sum is 3. The set of solutions to this equation can be written as (k; 3 - k), where k is any real number.

The main methods for solving equations with two variables are methods based on factoring expressions, highlighting the full square, using the properties of a quadratic equation, bounded expressions, and evaluation methods. The equation, as a rule, is transformed into a form from which a system for finding unknowns can be obtained.

Factorization

Example 1

Solve the equation: xy - 2 = 2x - y.

Solution.

We group the terms for the purpose of factoring:

(xy + y) - (2x + 2) = 0. Take out the common factor from each bracket:

y(x + 1) – 2(x + 1) = 0;

(x + 1)(y - 2) = 0. We have:

y = 2, x is any real number or x = -1, y is any real number.

Thus, the answer is all pairs of the form (x; 2), x € R and (-1; y), y € R.

Equality to zero of non-negative numbers

Example 2

Solve the equation: 9x 2 + 4y 2 + 13 = 12(x + y).

Solution.

Grouping:

(9x 2 - 12x + 4) + (4y 2 - 12y + 9) = 0. Now each parenthesis can be collapsed using the square difference formula.

(3x - 2) 2 + (2y - 3) 2 = 0.

The sum of two non-negative expressions is zero only if 3x - 2 = 0 and 2y - 3 = 0.

So x = 2/3 and y = 3/2.

Answer: (2/3; 3/2).

Evaluation method

Example 3

Solve the equation: (x 2 + 2x + 2) (y 2 - 4y + 6) = 2.

Solution.

In each bracket, select the full square:

((x + 1) 2 + 1)((y – 2) 2 + 2) = 2. Estimate the meaning of the expressions in brackets.

(x + 1) 2 + 1 ≥ 1 and (y - 2) 2 + 2 ≥ 2, then the left side of the equation is always at least 2. Equality is possible if:

(x + 1) 2 + 1 = 1 and (y - 2) 2 + 2 = 2, so x = -1, y = 2.

Answer: (-1; 2).

Let's get acquainted with another method for solving equations with two variables of the second degree. This method is that the equation is considered as square with respect to some variable.

Example 4

Solve the equation: x 2 - 6x + y - 4√y + 13 = 0.

Solution.

Let's solve the equation as a quadratic one with respect to x. Let's find the discriminant:

D = 36 - 4(y - 4√y + 13) = -4y + 16√y - 16 = -4(√y - 2) 2 . The equation will have a solution only when D = 0, i.e., if y = 4. We substitute the value of y into the original equation and find that x = 3.

Answer: (3; 4).

Often in equations with two unknowns indicate restrictions on variables.

Example 5

Solve the equation in integers: x 2 + 5y 2 = 20x + 2.

Solution.

Let's rewrite the equation in the form x 2 = -5y 2 + 20x + 2. The right side of the resulting equation, when divided by 5, gives a remainder of 2. Therefore, x 2 is not divisible by 5. But the square of a number that is not divisible by 5 gives a remainder of 1 or 4. Thus equality is impossible and there are no solutions.

Answer: no roots.

Example 6

Solve the equation: (x 2 - 4|x| + 5) (y 2 + 6y + 12) = 3.

Solution.

Let's select the full squares in each bracket:

((|x| – 2) 2 + 1)((y + 3) 2 + 3) = 3. The left side of the equation is always greater than or equal to 3. Equality is possible if |x| – 2 = 0 and y + 3 = 0. Thus, x = ± 2, y = -3.

Answer: (2; -3) and (-2; -3).

Example 7

For each pair of negative integers (x; y) satisfying the equation
x 2 - 2xy + 2y 2 + 4y = 33, calculate the sum (x + y). Answer the smallest amount.

Solution.

Select full squares:

(x 2 - 2xy + y 2) + (y 2 + 4y + 4) = 37;

(x - y) 2 + (y + 2) 2 = 37. Since x and y are integers, their squares are also integers. The sum of the squares of two integers, equal to 37, we get if we add 1 + 36. Therefore:

(x - y) 2 = 36 and (y + 2) 2 = 1

(x - y) 2 = 1 and (y + 2) 2 = 36.

Solving these systems and taking into account that x and y are negative, we find solutions: (-7; -1), (-9; -3), (-7; -8), (-9; -8).

Answer: -17.

Do not despair if you have difficulties when solving equations with two unknowns. With a little practice, you will be able to master any equation.

Do you have any questions? Don't know how to solve equations with two variables?
To get the help of a tutor - register.
The first lesson is free!

site, with full or partial copying of the material, a link to the source is required.

to solve math. Find quickly math equation solution in mode online. The website www.site allows solve the equation almost any given algebraic, trigonometric or transcendental equation online. When studying almost any section of mathematics at different stages, one has to decide equations online. To get an answer immediately, and most importantly an accurate answer, you need a resource that allows you to do this. Thanks to www.site solve equations online will take a few minutes. The main advantage of www.site when solving mathematical equations online- is the speed and accuracy of the issued response. The site is able to solve any algebraic equations online, trigonometric equations online, transcendental equations online, and equations with unknown parameters in the mode online. Equations serve as a powerful mathematical apparatus solutions practical tasks. With help mathematical equations it is possible to express facts and relations that may at first glance seem confusing and complex. unknown quantities equations can be found by formulating the problem in mathematical language in the form equations And decide the received task in the mode online on the website www.site. Any algebraic equation, trigonometric equation or equations containing transcendental features you easily decide online and get the right answer. Studying the natural sciences, one inevitably encounters the need solving equations. In this case, the answer must be accurate and it must be received immediately in the mode online. Therefore, for solve math equations online we recommend the site www.site, which will become your indispensable calculator for solve algebraic equations online, trigonometric equations online, and transcendental equations online or equations with unknown parameters. For practical problems of finding the roots of various mathematical equations resource www.. Solving equations online yourself, it is useful to check the received answer using online solution of equations on the website www.site. It is necessary to write the equation correctly and instantly get online solution, after which it remains only to compare the answer with your solution to the equation. Checking the answer will take no more than a minute, enough solve the equation online and compare answers. This will help you avoid mistakes in decision and correct the answer in time solving equations online either algebraic, trigonometric, transcendent or the equation with unknown parameters.

In this video, we will analyze a whole set of linear equations that are solved using the same algorithm - that's why they are called the simplest.

To begin with, let's define: what is a linear equation and which of them should be called the simplest?

A linear equation is one in which there is only one variable, and only in the first degree.

The simplest equation means the construction:

All other linear equations are reduced to the simplest ones using the algorithm:

  1. Open brackets, if any;
  2. Move terms containing a variable to one side of the equal sign, and terms without a variable to the other;
  3. Bring like terms to the left and right of the equal sign;
  4. Divide the resulting equation by the coefficient of the variable $x$ .

Of course, this algorithm does not always help. The fact is that sometimes, after all these machinations, the coefficient of the variable $x$ turns out to be equal to zero. In this case, two options are possible:

  1. The equation has no solutions at all. For example, when you get something like $0\cdot x=8$, i.e. on the left is zero, and on the right is a non-zero number. In the video below, we will look at several reasons why this situation is possible.
  2. The solution is all numbers. The only case when this is possible is when the equation has been reduced to the construction $0\cdot x=0$. It is quite logical that no matter what $x$ we substitute, it will still turn out “zero is equal to zero”, i.e. correct numerical equality.

And now let's see how it all works on the example of real problems.

Examples of solving equations

Today we deal with linear equations, and only the simplest ones. In general, a linear equation means any equality that contains exactly one variable, and it goes only to the first degree.

Such constructions are solved in approximately the same way:

  1. First of all, you need to open the parentheses, if any (as in our last example);
  2. Then bring similar
  3. Finally, isolate the variable, i.e. everything that is connected with the variable - the terms in which it is contained - is transferred to one side, and everything that remains without it is transferred to the other side.

Then, as a rule, you need to bring similar on each side of the resulting equality, and after that it remains only to divide by the coefficient at "x", and we will get the final answer.

In theory, this looks nice and simple, but in practice, even experienced high school students can make offensive mistakes in fairly simple linear equations. Usually, mistakes are made either when opening brackets, or when counting "pluses" and "minuses".

In addition, it happens that a linear equation has no solutions at all, or so that the solution is the entire number line, i.e. any number. We will analyze these subtleties in today's lesson. But we will start, as you already understood, with the simplest tasks.

Scheme for solving simple linear equations

To begin with, let me once again write the entire scheme for solving the simplest linear equations:

  1. Expand the parentheses, if any.
  2. Seclude variables, i.e. everything that contains "x" is transferred to one side, and without "x" - to the other.
  3. We present similar terms.
  4. We divide everything by the coefficient at "x".

Of course, this scheme does not always work, it has certain subtleties and tricks, and now we will get to know them.

Solving real examples of simple linear equations

Task #1

In the first step, we are required to open the brackets. But they are not in this example, so we skip this step. In the second step, we need to isolate the variables. Please note: we are talking only about individual terms. Let's write:

We give similar terms on the left and on the right, but this has already been done here. Therefore, we proceed to the fourth step: divide by a factor:

\[\frac(6x)(6)=-\frac(72)(6)\]

Here we got the answer.

Task #2

In this task, we can observe the brackets, so let's expand them:

Both on the left and on the right, we see approximately the same construction, but let's act according to the algorithm, i.e. sequester variables:

Here are some like:

At what roots does this work? Answer: for any. Therefore, we can write that $x$ is any number.

Task #3

The third linear equation is already more interesting:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

There are several brackets here, but they are not multiplied by anything, they just have different signs in front of them. Let's break them down:

We perform the second step already known to us:

\[-x+x+2x=15-6-12+3\]

Let's calculate:

We perform the last step - we divide everything by the coefficient at "x":

\[\frac(2x)(x)=\frac(0)(2)\]

Things to Remember When Solving Linear Equations

If we ignore too simple tasks, then I would like to say the following:

  • As I said above, not every linear equation has a solution - sometimes there are simply no roots;
  • Even if there are roots, zero can get in among them - there is nothing wrong with that.

Zero is the same number as the rest, you should not somehow discriminate it or assume that if you get zero, then you did something wrong.

Another feature is related to the expansion of parentheses. Please note: when there is a “minus” in front of them, we remove it, but in brackets we change the signs to opposite. And then we can open it according to standard algorithms: we will get what we saw in the calculations above.

Understanding this simple fact will help you avoid making stupid and hurtful mistakes in high school, when doing such actions is taken for granted.

Solving complex linear equations

Let's move on to more complex equations. Now the constructions will become more complicated and a quadratic function will appear when performing various transformations. However, you should not be afraid of this, because if, according to the author's intention, we solve a linear equation, then in the process of transformation all monomials containing a quadratic function will necessarily be reduced.

Example #1

Obviously, the first step is to open the brackets. Let's do this very carefully:

Now let's take privacy:

\[-x+6((x)^(2))-6((x)^(2))+x=-12\]

Here are some like:

Obviously, this equation has no solutions, so in the answer we write as follows:

\[\variety \]

or no roots.

Example #2

We perform the same steps. First step:

Let's move everything with a variable to the left, and without it - to the right:

Here are some like:

Obviously, this linear equation has no solution, so we write it like this:

\[\varnothing\],

or no roots.

Nuances of the solution

Both equations are completely solved. On the example of these two expressions, we once again made sure that even in the simplest linear equations, everything can be not so simple: there can be either one, or none, or infinitely many. In our case, we considered two equations, in both there are simply no roots.

But I would like to draw your attention to another fact: how to work with brackets and how to expand them if there is a minus sign in front of them. Consider this expression:

Before opening, you need to multiply everything by "x". Please note: multiply each individual term. Inside there are two terms - respectively, two terms and is multiplied.

And only after these seemingly elementary, but very important and dangerous transformations have been completed, can the bracket be opened from the point of view that there is a minus sign after it. Yes, yes: only now, when the transformations are done, we remember that there is a minus sign in front of the brackets, which means that everything below just changes signs. At the same time, the brackets themselves disappear and, most importantly, the front “minus” also disappears.

We do the same with the second equation:

It is no coincidence that I pay attention to these small, seemingly insignificant facts. Because solving equations is always a sequence of elementary transformations, where the inability to clearly and competently perform simple actions leads to the fact that high school students come to me and learn to solve such simple equations again.

Of course, the day will come when you will hone these skills to automatism. You no longer have to perform so many transformations each time, you will write everything in one line. But while you are just learning, you need to write each action separately.

Solving even more complex linear equations

What we are going to solve now can hardly be called the simplest task, but the meaning remains the same.

Task #1

\[\left(7x+1 \right)\left(3x-1 \right)-21((x)^(2))=3\]

Let's multiply all the elements in the first part:

Let's do a retreat:

Here are some like:

Let's do the last step:

\[\frac(-4x)(4)=\frac(4)(-4)\]

Here is our final answer. And, despite the fact that in the process of solving we had coefficients with a quadratic function, however, they mutually canceled out, which makes the equation exactly linear, not square.

Task #2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Let's do the first step carefully: multiply every element in the first bracket by every element in the second. In total, four new terms should be obtained after transformations:

And now carefully perform the multiplication in each term:

Let's move the terms with "x" to the left, and without - to the right:

\[-3x-4x+12((x)^(2))-12((x)^(2))+6x=-1\]

Here are similar terms:

We have received a definitive answer.

Nuances of the solution

The most important remark about these two equations is this: as soon as we start multiplying brackets in which there is more than a term, then this is done according to the following rule: we take the first term from the first and multiply with each element from the second; then we take the second element from the first and similarly multiply with each element from the second. As a result, we get four terms.

On the algebraic sum

With the last example, I would like to remind students what an algebraic sum is. In classical mathematics, by $1-7$ we mean a simple construction: we subtract seven from one. In algebra, we mean by this the following: to the number "one" we add another number, namely "minus seven." This algebraic sum differs from the usual arithmetic sum.

As soon as when performing all the transformations, each addition and multiplication, you begin to see constructions similar to those described above, you simply will not have any problems in algebra when working with polynomials and equations.

In conclusion, let's look at a couple more examples that will be even more complex than the ones we just looked at, and in order to solve them, we will have to slightly expand our standard algorithm.

Solving equations with a fraction

To solve such tasks, one more step will have to be added to our algorithm. But first, I will remind our algorithm:

  1. Open brackets.
  2. Separate variables.
  3. Bring similar.
  4. Divide by a factor.

Alas, this wonderful algorithm, for all its efficiency, is not entirely appropriate when we have fractions in front of us. And in what we will see below, we have a fraction on the left and on the right in both equations.

How to work in this case? Yes, it's very simple! To do this, you need to add one more step to the algorithm, which can be performed both before the first action and after it, namely, to get rid of fractions. Thus, the algorithm will be as follows:

  1. Get rid of fractions.
  2. Open brackets.
  3. Separate variables.
  4. Bring similar.
  5. Divide by a factor.

What does it mean to "get rid of fractions"? And why is it possible to do this both after and before the first standard step? In fact, in our case, all fractions are numeric in terms of the denominator, i.e. everywhere the denominator is just a number. Therefore, if we multiply both parts of the equation by this number, then we will get rid of fractions.

Example #1

\[\frac(\left(2x+1 \right)\left(2x-3 \right))(4)=((x)^(2))-1\]

Let's get rid of the fractions in this equation:

\[\frac(\left(2x+1 \right)\left(2x-3 \right)\cdot 4)(4)=\left(((x)^(2))-1 \right)\cdot 4\]

Please note: everything is multiplied by “four” once, i.e. just because you have two brackets doesn't mean you have to multiply each of them by "four". Let's write:

\[\left(2x+1 \right)\left(2x-3 \right)=\left(((x)^(2))-1 \right)\cdot 4\]

Now let's open it:

We perform seclusion of a variable:

We carry out the reduction of similar terms:

\[-4x=-1\left| :\left(-4 \right) \right.\]

\[\frac(-4x)(-4)=\frac(-1)(-4)\]

We have received the final solution, we pass to the second equation.

Example #2

\[\frac(\left(1-x \right)\left(1+5x \right))(5)+((x)^(2))=1\]

Here we perform all the same actions:

\[\frac(\left(1-x \right)\left(1+5x \right)\cdot 5)(5)+((x)^(2))\cdot 5=5\]

\[\frac(4x)(4)=\frac(4)(4)\]

Problem solved.

That, in fact, is all that I wanted to tell today.

Key points

The key findings are as follows:

  • Know the algorithm for solving linear equations.
  • Ability to open brackets.
  • Do not worry if you have quadratic functions somewhere, most likely, in the process of further transformations, they will be reduced.
  • The roots in linear equations, even the simplest ones, are of three types: one single root, the entire number line is a root, there are no roots at all.

I hope this lesson will help you master a simple, but very important topic for further understanding of all mathematics. If something is not clear, go to the site, solve the examples presented there. Stay tuned, there are many more interesting things waiting for you!